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Abstract. Plasma membrane vesicles were isolated 
from papaya (Carica papaya) leaf cells by a two- 
phase partition system. Redox activities of these 
vesicles were determined by ferricyanide reduction 
and N A D H  oxidation. Ferricyanide reductase ac- 
tivity was accompanied by continuous acidification 
of  the medium and was stimulated by fusicoccin. 
N A D H  oxidase activity was inhibited by catalase. 

two-phase polymer system, which is a powerful tool 
for the rapid and efficient separation and purifica- 
tion of  membrane fractions (Briskin et al. 1987, 
Larsson 1985, Larsson et al. 1987). Redox activities 
of this plasma membrane fraction were studied by 
using spectrophotometric and polarographic tech- 
niques. 

Materials and Methods 

Plasma membrane  redox systems (PMRS) have 
been found in plant cells (Barr et al. 1984, Craig et 
al. 1981, Thiel and Kirst 1988), as well as in animal 
cells (Crane et al. 1985). The physiological role of 
these systems is still under discussion (Crane et al. 
1985, Komor  et al. 1987, Mr and Lin 1986). Ev- 
idence exists pointing out to the involvement of 
PMRS in iron reduction and uptake, and superoxide 
generation (Bienfait 1985, Cakmak and Marschner 
1988, Crane et al. 1991). 

Most of  the studies with plant cells have been 
carried out by using whole cells or tissue fragments 
(Barr et al. 1984, Craig et al. 1981, Ltithen and B6tt- 
ger 1988a,b, Morr6 et al. 1987a, Thiel and Kirst 
1988); in addition, most of these works have fo- 
cused on roots (L~ithen and B6ttger 1988a,b; Ru- 
binstein and Stern 1986), although PMRS have been 
also inves t igated  in some pho to syn the t i c  cells 
(Marr6 et al. 1988, Neufeld and Bown 1987, Trock- 
ner and Marr6 1988). Only a few works have been 
done with isolated vesicles (Askerlund et al. 1987, 
Morr6 et al. 1987, Sandelius et al. 1986, Vianello 
and Macri 1989). 

In this work, plasma membrane vesicles were iso- 
lated from papaya leaf cells by fractionation in a 

Abbreviations: FC, fusicoccin; PCMBS, parachloromercuri- 
benzenesulfonic acid. 

Obtention of the Microsomal Fraction 

Papaya (Carica papaya) leaves were cut and homogenized in a 
weight:volume ratio 1:2 of the homogenization medium, consist- 
ing in 0.25 M sucrose, 70 mM Tris (pH 8), 3 mM EDTA, 4 mM 
DTT, and bovine serum albumine (0.1% wt/vol). The homogeni- 
zation was carried out with an Omni-Mixer (Sorvall) homoge- 
nizer (8 • 20 s pulses). The homogenate was filtered through 
muslin and centrifuged at 10,000 g for 10 rain. The pellet was 
discarded and the supernatant fraction was centrifuged at 50,000 
g for 30 min. All procedures were carried out at 4~ The mi- 
crosomal pellet obtained was resuspended in a 3 mM KC1, 0.33 
M sucrose, 5 mM phosphate buffer (pH 7.8). This was the start- 
ing material for the two-phase partition of membranes. 

Two-phase Partition of Membranes 

The method described by Larsson (1985) was followed with 
slight modifications. Two grams of the microsomal suspension 
were added to a 30 g phase mixture to give the 32 g phase system 
with a final composition of 6.2% (wt/wt) Dextran T500, 6.2% 
(wt/wt) polyethylene glycol 3350, 0.33 M sucrose, 3 mM KCI, 5 
mM potassium phosphate, pH 7.8. The phase system was thor- 
oughly mixed by 40 inversion of the tube, and the two phases 
were separated by centrifugation at 4~ in a swinging bucket 
centrifuge at 2000 g for 3 min. The upper phase was removed and 
added to a centrifuge tube loaded with new bottom phase. At the 
same time, new upper phase was added over the bottom phase in 
the original tube. The phases were mixed and the procedure was 
repeated twice. Finally, the upper phases with pure plasma mem- 
branes were combined and diluted at least twofold with 3 mM 
KC1, 0.33 M sucrose, 5 mM phosphate buffer (pH 7.8). Plasma 
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membranes were collected by centrifugation at 100,000 g for 30 
min. The membrane pellet was resuspended in the same medium, 
divided in 300--400 Ixl aliquots, immediately frozen in liquid ni- 
trogen, and stored at -70~ until utilization. 

Ferricyanide Reductase Assay 

The reduction of 0.5 mM ferricyanide was assayed spectropho- 
tometrically at room temperature in 20 mM Tris-Hepes buffer 
(pH 7) with a Shimadzu UV-160 double beam spectrophotome- 
ter. The sample cuvette containing 4--6 l~g of membrane protein 
per assay was measured against a blank with no vesicle added. 
The baseline was allowed to stabilize for a few minutes. There- 
after, the assay was started by adding NADH to a final concen- 
tration of 0.5 mM. 

NADH Oxidase Assay 

NADH oxidase activity was followed by measuring oxygen con- 
sumption at 25~ by means of an oxygen electrode (Oxygraph, 
Gilson); 50--60 I~g of membrane protein per assay was added to 
acetate buffer (pH 5). NADH, FeSO4, and catalase were used at 
final concentrations 4 raM, 40 ixM, and 3 mg/ml, respectively. 

Continuous Monitoring of Extravesicular pH 

Membrane vesicles (50-60 Ixg of protein) were added to 6 ml of 
0.5 mM ferricyanide in 0.5 mM Hepes buffer (pH 7) and main- 
tained at 25~ with continuous stirring. The pH was monitored 
continuously with a pH electrode connected to a recorder. A 
baseline was established and the experiment was initiated by 
adding NADH to a final concentration of 1 mM. 

Protein Assay 

Protein was determined according to the method described by 
Bradford (1976). 

Results and Discussion 

The advantages of two-phase polymer partition 
have been previously stated (Briskin et al. 1987, 
Larsson 1985, Larsson et al. 1987, Sandelius et al. 
1986). Plasma membrane vesicles obtained from pa- 
paya leaf cells by this procedure showed ferricya- 
nide reductase activity when assayed in the pres- 
ence of NADH. This NADH:ferr icyanide oxi- 
doreductase activity showed hyperbolic kinetics 
with a very high affinity Km for ferricyanide (59 
IxM), and a Vma,, (800 nmol �9 min- l . mg-  1 protein) 
consistent with the values obtained in other plant 
systems (Sandelius et al. 1986). 

As shown in Table I, Triton X-100, a non-ionic 
detergent which dissociates membranes, increased 
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Table 1. NADH:ferricyanide reductase activity in plasma mem- 
branes-Effec t s  of Triton X-100 and PC MBS. 

Ferricyanide reduced 
Compound added (nmol �9 min-1 . m g - t  protein) 

None (control vesicles) 632 - 4 
Triton X-100 (0.01% (vol/vol)) 969 --+ 52 
PCMBS (50 I~M) 85 --- 19 

Data are given as means -+ SD of three different measurements. 

the rate of ferricyanide reduction by 50%. It is well 
known that a great percentage of the vesicles ob- 
tained by the two-phase method are right side-out 
sealed (Larsson 1985, Larsson et al. 1987). This 
stimulatory effect of Triton X-100 on ferricyanide 
reduction may be explained because the vesicles 
obtained by the two-phase partition system seem to 
be sealed too tightly to allow maximum rates, as 
discussed previously (Sandelius et al. 1986). The 
low concentrations of non-ionic detergent could 
cause a rearrangement of the proteins into the mem- 
brane. In Table 1, it is also shown that PCMBS, an 
agent that blocks sulfhydryl groups, inhibited more 
than 85% the ferricyanide reduction rate at 50 txM. 
In agreement with the findings in plasma mem- 
branes from other cells (Sun et al. 1984, Sandelius 
et al. 1986), this inhibitory effect of PCMBS seems 
to show that one or more sulfhydryl groups are es- 
sential in this plasma membrane redox activity. 

Fusicoccin (FC) is a fungal metabolite that affects 
several physiological processes normally controlled 
by plant hormones (Ballio et al. 1964, Marr6 1979, 
Aducci et al. 1982, 1988). It seems that the first step 
in the mechanism of action of FC is its recognition 
by high-affinity and specific-binding sites of mem- 
branes (Aducci et al. 1982). As it has been recently 
shown in a reconstituted system (Aducci et al. 
1988), there is a functional relationship in the 
plasma membrane between the FC-binding protein 
and the H +-ATPase. This relationship explains why 
there is an increased H + extrusion by cells (L0then 
and B6ttger 1988, Marr6 et al. 1988) or vesicles 
(Aducci et al. 1988) in the presence of FC. Trockner 
and Marr6 (1988) have shown that FC also induces 
an increase in oxygen uptake by Elodea densa 
leaves. It has been reported that FC also induces an 
increase in the rate of ferricyanide reduction in sev- 
eral plant cells or tissues tested (Craig and Crane 
1982, Marr6 et al. 1988). As B6ttger and Hilgendorf 
(1988) point out, only at ferricyanide levels far 
higher than the Km of the reductase, FC should in- 
crease the reduction rate. We tested the influence of 
50 I~M FC on ferricyanide reductase activity in 
plasma membrane vesicles from papaya leaf incu- 
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Fig. 1. Proton extrusion to the medium by papaya plasma mem- 
brane vesicles in the presence of 0.5 mM ferricyanide and 1 mM 
NADH. The experiment was carried out as described in Mate- 
rials and Methods. The acidification rate remained constant for 
at least 20 min. 

Fig. 2. Oxygen consumption by plasma membrane vesicles as 
determined by an oxygen electrode at 25~ and pH 5. The initial 
concentration ofO 2 in the buffer medium was assumed to be 0.25 
~mol/ml. Arrows indicate the addition of 4 mM NADH, 40 I~M 
FeSO4, and catalase (3 mg/ml). 

bated in the presence of 0.5 mM ferricyanide, a con- 
centration far higher than the Km obtained for this 
system. There was a very clear and significant in- 
crease by 20% in the rate of ferricyanide reduction. 
Since experiments were carried out with plasma 
membrane vesicles in the absence of ATP, an indi- 
rect effect of FC on PMRS through its effect on 
plasma membrane ATPase should be ruled out as 
the only explanation. Thus, this stimulation seems 
to be a direct effect on one of the electron carriers 
of the PMRS, according to the hypothesis suggested 
by Brttger and Hilgendorf (1988). To our knowl- 
edge, at least one other different and direct effect of 
FC has been recently described--namely, a rapid 
stimulation of ethylene production in detached rice 
leaves (Chen and Kao 1993). 

The redox reaction 

2 Fe(CN)63- + NADH + H + 
2 Fe(CN)64- + H + 

produces a net increase in proton concentration. 
This fact makes it possible to follow ferricyanide 
reductase activity by continuous measurement of 
the extravesicular pH in a weakly buffered medium. 
Figure 1 shows that there was a continuous acidifi- 
cation of the medium when ferricyanide and NADH 
were added to the vesicular suspension. The aver- 
age rate of this proton increase was 130 nmol H + • 
min- t  x mg-~ protein. In plant cells, ferricyanide 
reduction is accompanied by acidification of both 
cytoplasm and extracellular medium (Marr6 et al. 
1988). 

An NADH oxidase has been described in radish 
plasmalemma vesicles which is greatly stimulated 
by ferrous ions (Vianello and Macri 1989). In the 
present work, NADH oxidase activity was tested at 
pH 5 by using an Oxygraph oxygen electrode. As 
shown in Fig. 2, this activity was greatly increased 
upon the addition of FeSO4, and was inhibited by 
the addition of catalase, as previously described in 
radish plasmalemma vesicles (Vianello and Macri 
1989). The effect of catalase pointed out the pres- 
ence of H202; the striking stimulation effect of 
NADH oxidation by ferrous ions could be ex- 
plained by accounting for the formation of peroxide 
and superoxide ion radicals (Byczkowski and Gess- 
ner 1988; Cakmak and Marschner 1988; Halliwell 
and Gutteridge 1988; Vianello and Macri 1989). Fer- 
rous ions would react with H20 z to give very reac- 
tive hydroxyl radicals ('OH) in a Fenton reaction 
(Vianello and Macri 1989). The ferric ions produced 
in the Fenton reaction would increase both the 
NADH oxidation and the oxygen consumption, giv- 
ing rise to more H202 through the intermediate for- 
mation of superoxide anion radicals (O~-). Figure 2 
shows that catalase produced a slight initial release 
of oxygen due to the consumption of H202 which, 
on the other hand, would give rise to an inhibition of 
the Fenton reaction and hence of oxygen consump- 
tion. 

In conclusion, plasma membrane vesicles iso- 
lated from papaya leaf show a NADH:ferricyanide 
oxidoreductase activity which responds to activa- 
tion by FC and to inhibition by sulfhydryl group 
blockers, and a NADH oxidase activity that very 
probably gives rise to ion-radicals. 
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